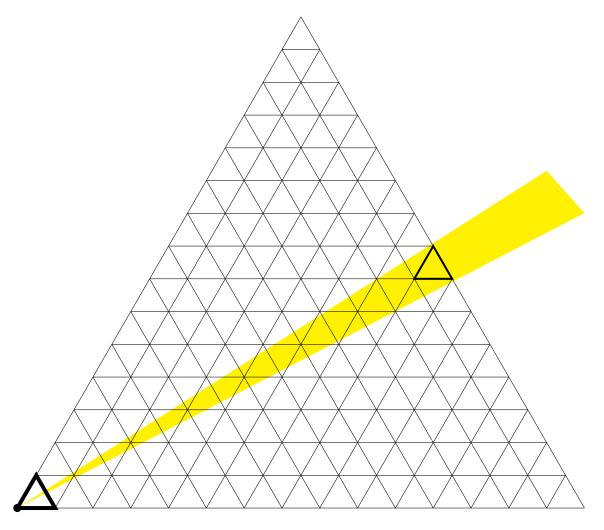
Городской тур 2016/17. 9 класс. Решения.

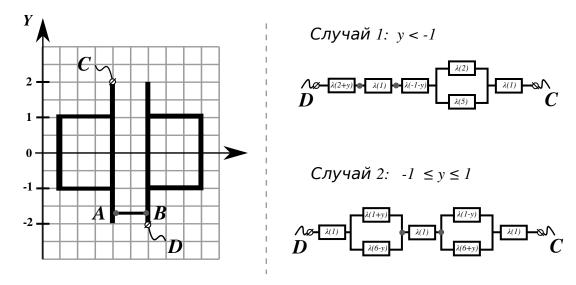
Задача 1. Зеркальный лабиринт

Построим "развёртку" треугольной комнаты. Теперь лучи не отражаются от стенок, а проходят сквозь них в следующий зазеркальный треугольник.



Заметим, что рано или поздно угол станет достаточно широким, чтобы в него помещалась вся комната. В этот момент, далеко-далеко от прожектора, весь треугольник (хотя бы один) попадёт в луч прожектора. Значит, хватит одного прожектора, и ставить его можно как угодно. На рисунке приведён пример постановки прожектора в один из углов комнаты и направление его «по биссектрисе» угла треугольника. На этой картинке выделено изображение комнаты, полностью попавшее в луч прожектора.

Задача 2. Динамическая схема



Удобнее всего выбрать начала координат для определения координаты отрезка AB посередине схемы (см. рис. положение y=0). Далее, понятно, что схема симметрична относительно положения y=0, а сопротивления между точками C и D будет равным при смещении отрезка AB на одно значение y в положительную и отрицательную область от выбранного начала координат. Таким образом достаточно рассмотреть лишь два случая: Случай 1 при y<-1 и Случай 2 при $-1\leq y\leq 1$. Эквивалентные схемы приведены на рисунке. Обозначив удельное линейное сопротивление за $\lambda=7$ Ом/м, для Случая 1 искомое сопротивление схемы запишется как

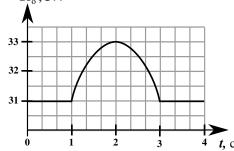
$$R_o(y) = \lambda \cdot (y+2) + \lambda \cdot 1 + \lambda \cdot (1 - (y+2)) + \lambda \cdot \frac{2 \cdot 5}{7} + \lambda \cdot 1 = \lambda \left(3 + \frac{10}{7}\right) = 310$$
M.

Для Случая 2 сопротивление примет вид

$$R_o(y) = \lambda \cdot 1 + \lambda \cdot \frac{(1+y) \cdot (6-y)}{7} + \lambda \cdot 1 + \lambda \cdot \frac{(1-y) \cdot (6+y)}{7} + \lambda \cdot 1 = \lambda \left(3 + \frac{10 + 2 \cdot (1-y^2)}{7}\right) = 31 + 2(1-y^2) \text{Om},$$

что представляет из себя параболу. По условию отрезок движется со скоростью 1 м/c, а стартует он из ниженего положения y=-2, тогда со временем его положение меняется так $y=-2+\cdot t$. Зависимость сопротивления между точками C и D от времени будет выглядеть так (график зависимости см. рис.)

При
$$t<1$$
 или $t>3\Rightarrow R_o=31$ Ом
$$\label{eq:Rombinstate}$$
 При $1\leq t\leq 3\Rightarrow R_o=31+2\cdot (1-(t-2)^2)$ Ом
$$\begin{tabular}{l} R_o\ ,\mbox{OM} \end{tabular}$$



Задача 3. Связанные блоки

Поскольку нить лёгкая, то в любой точке она имеет натяжение T. На подвижный блок с номером i действует сила 2T, направленная вверх и сила тяжести $m_i g$ со стороны груза — она направлена вниз. Это позволяет записать второй закон Ньютона в виде

$$m_i a_i = 2T - m_i g, \quad i = 1, 2, \dots, N,$$
 (1)

где a_i — ускорение i-го подвижного блока, а значит, и ускорение i-го груза. При этом ускорения a_i связаны условием

$$a_1 + a_2 + \ldots + a_N = 0. (2)$$

Понять происхождение этого условия несложно: действительно, нить нерастяжима, а значит, сумма перемещений каждого блока равна нулю (в противном случае нить растянется):

$$\Delta x_1 + \Delta x_2 + \ldots + \Delta x_N = 0. \tag{3}$$

Но каждое перемещение (за время Δt) связано со своим ускорением: $\Delta x_i = a_i \Delta t^2/2$, следовательно, можно написать

$$\frac{a_1 \Delta t^2}{2} + \frac{a_2 \Delta t^2}{2} + \ldots + \frac{a_N \Delta t^2}{2} = 0,$$
(4)

откуда следует (2).

Теперь осталось из уравнений (1) и (2) найти ускорения. Поделим каждое из уравнений (1) на m_i :

$$a_i = \frac{2T}{m_i} - g. (5)$$

Теперь сложим все эти уравнения: в левой части получится сумма $a_1 + a_2 + \ldots + a_N = 0$, а в правой

$$0 = 2T\left(\frac{1}{m_1} + \frac{1}{m_2} + \dots + \frac{1}{m_N}\right) - Ng,\tag{6}$$

откуда находим силу натяжения

$$T = \frac{1}{2} \left(\frac{1}{m_1} + \frac{1}{m_2} + \dots + \frac{1}{m_N} \right)^{-1} Ng.$$
 (7)

Из второго закона Ньютона (5) сразу получается выражение для искомого ускорения a_i :

$$a_i = g\left(\left(\frac{1}{m_1} + \frac{1}{m_2} + \dots + \frac{1}{m_N}\right)^{-1} \frac{N}{m_i} - 1\right), \quad i = 1, 2, \dots, N.$$
 (8)

Задача 4. Греем шар

Рассмотрим тепловую энергию, заключенную внутри воздушного шара в некоторый момент времени t:

$$E(t) = m(t) \cdot c \cdot (T(t) - T_0)$$

где $m(t) = u \cdot t$ — масса воздуха внутри шара, c — удельная теплоемкость воздуха, $T(t) = T_0(1 + \alpha t)$ — температура воздуха внутри шара. В качестве точки отсчета энергии удобно принять энергию тела с температурой окружающей среды, так как температура воздуха в процессе надувания шара не опускается ниже T_0 . Подставим зависимости в формулу:

$$E(t) = ut \cdot c \cdot T_0 \alpha t = u\alpha c T_0 \cdot t^2$$

Нам необходимо найти скорость изменения этой энергии во времени. Для этого можно провести аналогию с прямолинейным равноускоренным движением, так как в нем координата движущейся точки тоже квадратично зависит от времени, и мы знаем явную формулу для скорости изменения этой координаты:

$$x(t) = x_0 + v_0 t + \frac{a}{2}t^2$$
$$v(t) = v_0 + at$$

Тогда скорость изменения энергии зависит от времени как:

$$w(t) = 2cu\alpha T_0 \cdot t$$

И эта скорость равняется мощности нагревателя, так как энергия, привносимая в систему ненагретым потоком воздуха равна нулю в силу выбора начального отсчета для энергии.

Задача 5. Раздельный конус

Посмотрим на то, какие силы действуют на отдельно плавающую половинку конуса. Суммарная сила давления воды, действующая на неё будет направлена по вертикали, а значит, горизонтальные составляющие в сумме дают нуль. Тогда сила давления на боковую поверхность конуса равна силе давления на треугольник — сечение конуса.

Итак, получается, что итоговая горизонтальная составляющая силы давления воды на половинку это сила давления воды на вертикальный треугольник. Найдём её.

Заметим, что наш конус погружен верхней частью в масло, а нижней — в воду. Тогда суммарную силу давления можно посчитать как сумму двух частей: для конуса с высотой в 2 раза меньше в масле и для целого конуса в воде. Однако не стоит забывать, что верхняя часть конуса всё же не погружена в воду, а потому нужно ещё вычесть силу давления для конуса с высотой в 2 раза меньше в воде. Другими словами, суммарная сила давления — это сумма сил давления на исходный конус когда он целиком в воде плюс сила давления на верхнюю часть конуса, которая эффективно погружена в жидкость плотности $\rho_1 - \rho_0$. Найдём тогда силу давления на конус.

Сила давления — это произвдение давления на площадь поверхности. Но эта формула работает для постоянных давлений. У нас же давление линейно зависит от глубины, а потому оно не постоянно. Что-бы найти суммарную силу давления, нужно разбить треугольник на кусочки с примерно постоянной силой давления, посчитать силу в каждом из кусочков, а затем сложить.

Заметим, что давление зависит от глубины линейно, а значит, описанное выше вычисление будет в точности совпадать с вычислением центра масс фигуры. Действительно, проделаем это аккуратно. Разобьём фигуру на узкие горизонтальные полоски-трапеции. Пусть их всего N штук, и площадь i-ой равна S_i . Введём поверхностную плотность фигуры ρ , и посчитаем координату $y_{\text{п.м.}}$ центра масс (ось y направлена вертикально вниз, ноль в верхней точке фигуры): $y_{\text{п.м.}} \cdot M = \sum_{i=1}^N y_i \cdot m_i$, или, подставляя массу как поверхностная плотность умножить на площадь, $y_{\text{п.м.}} \cdot S \cdot \rho = \sum_{i=1}^N y_i \cdot S_i \rho$. Сокращая на ρ , получаем такую важную формулу:

$$y_{\text{\tiny II,M.}} \cdot S = \sum_{i=1}^{N} y_i \cdot S_i$$

Посчитаем теперь для этой фигуры, вертикально опущенной в жидкость плостности ρ_0 силу давления жидкости на неё (поверхность жидкости на уровне верха фигуры). На каждый маленький кусок будет действовать постоянное давление, а значит, силу давления на i-ый кусок можно найти как $P_i \cdot S_i = \rho_0 g y_i S_i$. Тогда суммарная сила давления — это сумма сил давления на каждый кусок: $F_\Sigma = \sum_{i=1}^N \rho_0 g y_i S_i = \rho_0 g \sum_{i=1}^N y_i S_i$, что по доказанной формуле будет $F = \rho_0 g y_{\text{п.м.}} \cdot S$.

Итак, для треугольника с высотой h и стороной a суммарная сила давления получится равной (расстояние от вершины до центра масс треугольника, как известно, $\frac{2}{3}h$):

$$F = \rho g \frac{2}{3}h \cdot \frac{1}{2}ah = \frac{1}{3}\rho gah^2$$

Заметим, что у нас есть неучтённое масло, которое создаёт дополнительное давление на нижнюю часть треугольника (площадь этой части $S_{\text{н.}} = \frac{1}{2}2\frac{H}{\sqrt{3}} \cdot H - \frac{1}{2}\frac{H}{\sqrt{3}} \cdot \frac{H}{2}$). Эта добавочное давление к нижней части конуса постоянно, и вместо него нами учтена якобы имеющаяся там вода. Поэтому надо добавить ещё силу давления $F_{\text{доб.}} = \frac{\sqrt{3}}{8}(\rho_1 - \rho_0)gH^3$. Тогда итоговая сила давления (дополнительное давление появляется засчёт наличия неучтённого масла):

$$F = \frac{1}{3}\rho_0 g \cdot 2 \frac{H}{\sqrt{3}} H^2 + \frac{1}{3}(\rho_1 - \rho_0) g \cdot 2 \frac{H}{2\sqrt{3}} \left(\frac{H}{2}\right)^2 + F_{\text{доб.}} = \frac{2}{3\sqrt{3}}\rho_0 g H^3 + \frac{1}{12\sqrt{3}}(\rho_1 - \rho_0) g H^3 + \frac{\sqrt{3}}{8}(\rho_1 - \rho_0) g H^3 =$$

$$= \sqrt{3}\rho_0 g H^3 (\frac{2}{9} - \frac{1}{36} - \frac{1}{8}) + \sqrt{3}\rho_1 g H^3 (\frac{1}{36} + \frac{1}{8}) = \sqrt{3}\rho_0 g H^3 \frac{16 - 2 - 9}{72} + \sqrt{3}\rho_1 g H^3 \frac{2 + 9}{72} =$$

$$= \frac{5\sqrt{3}}{72}\rho_0 g H^3 + \frac{11\sqrt{3}}{72}\rho_1 g H^3$$